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Abstract 

The absolute values of the reflecting powers /9 are 
measured for the 200 and 2 ± ~',0,0 set of magnetic and 
nuclear reflections in the helimagnetic phase of a 
good-quality crystal of MnP as a function of its thick- 
ness. Severe and very different extinction effects are 
observed for the magnetic and nuclear reflections 
(Ymagnetic"0"4, Ynudear~O'02 for the largest thick- 
ness). This corresponds to the spectacular result that 
the magnetic reflecting powers p± are twice as big as 
the nuclear one pN, in spite of the fact that the 
scattering cross sections F± 2 are about ten times 
smaller than the nuclear FNI 2. The nuclear results 
appear consistent with dynamical theory while the 
magnetic ones are not. They can be explained by 
Zachariasen's type II secondary extinction model 
based on the chirality domain pattern. The same 
measurements were performed in the ferromagnetic 
phase, yielding Yrer~o = 0'03. A model using the rela- 
tive sizes of the ferromagnetic and chirality domains 
is presented. 

I. Introduction 

The basic publication on extinction for the neutron 
case, within the framework of the mosaic model, is 
now nearly forty years old (Bacon & Lowde, 1948). 
Since then most of the improvements introduced to 
correct the extinction of the intensities diffracted by 
a single-crystal sample originate from the theory 
based on the Darwin energy transfer equations 

worked out by Zachariasen (1967). This theory was 
modified to take into account the anisotropy of the 
extinction by Coppens & Hamilton (1970) and 
Thornley & Nelmes (1974). The formalism was recon- 
sidered and improve~t by Cooper & Rouse (1970) and 
Becker & Coppens (1974a, b) in order to apply it to 
spherical or ellipsoidal crystals, the theory being 
extended to non-spherical crystals with anisotropic 
extinction by Becker & Coppens (1975). 

The main limitation of Zachariasen's theory is in 
its kinematical approach to the scattering, as pointed 
out by Werner (1969, 1974): the coherence of the 
transmitted and diffracted beams is not taken into 
account, and so this method does not appear to be 
suitable for correction for severe primary extinction. 
Another approach, starting from the dynamical 
theory of diffraction, was worked out for distorted 
crystals by several authors (Klar & Rustichelli, 1973; 
Gronkowski & Malgrange, 1984; Kulda, 1984), but 
mainly by Kato (1976), who has partially reconciled 
the two approaches. He shows that for optical coher- 
ence lengths smaller than the extinction distance A 
the new treatment leads to the usual coupling 
equations. Kato (1980) has also developed a con- 
sistent statistical theory of extinction covering the 
whole range of crystal quality from perfect (dynami- 
cal theory) to ideally imperfect (kinematical approxi- 
mation). The results of this last theory have recently 
been compared to those of previous ones (Becker & 
Dunstetter, 1984) and experimentally tested using 
polarized neutrons (Guigay, Schlenker, Baruchel & 
Schweizer, unpublished). 
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48 NUCLEAR AND MAGNETIC EXTINCTION IN MnP 

A considerable theoretical effort, supported by a 
large amount of experimental evidence, was thus 
furnished to improve the extinction corrections in the 
neutron nuclear diffraction case. However, only a 
little has been published about the extinction in mag- 
netic scattering, a pioneering paper being published 
by Hamilton in 1958. Nathans, Shull, Shirane & 
Andresen (1959) observed that the measured flipping 
ratios are more different from 1 when recorded on 
the flanks of the rocking curve and not, as is cus- 
tomary, at the maximum of the peak. This occurs 
when secondary extinction is present and was used, 
in an improved form, by Van Laar, Maniawski & 
Kaprzyk (1979) to measure accurately the structure 
factors on samples previously treated to remove 
primary extinction. Other treatments for the extinc- 
tion when there is a mixture of both nuclear and 
magnetic scattering were given by Brown (1970) and, 
more recently, by Yelon, Van Laar, Kaprzyk & 
Maniawski (1984) for highly deformed specimens. As 
a general rule, the usual treatments were applied to 
magnetic diffraction just as they are, without con- 
sidering the additional features associated with mag- 
netic order. Indeed, the presence of crystal defects 
implies discontinuities in the magnetic structure and, 
in this way, gives rise to magnetic defects. The con- 
verse, however, may not be true since (1) the magnetic 
energies associated with the interactions of the mag- 
netic moments are small relative to those between 
atoms in crystals, and (2) as the magnetic moments 
have directions, the imperfections in the magnetic 
structure can be associated with changes in this direc- 
tion in addition to changes in the magnitude and 
position of the moments (Roth, 1970). A simple 
example, but far from being the only one, is a 180 ° 
wall. We will show, in this work, that failure to take 
these additional features into account in magnetic 
scattering can lead to very incorrect results in cases 
of severe extinction. 

The present work was performed on the well 
studied MnP system, which crystallizes in the Pbnm 
orthorhombic space group ( a > b > c ) .  It can be 
grown as large high-purity low-mosaic-spread single 
crystals (Komatsubara,  Kinoshita & Hirahara, 1965), 
resistivity ratios as high as 1300 having been obtained 
(Obara, Endoh, Ishikawa & Komatsubara, 1980) with 
mosaic spreads smaller than 1'. MnP is ferromagnetic 
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Fig. 1. Schematic diagram of the double spiral structure of MnP 
in its helimagnetic phase (after Felcher, 1966). 

below Tc = 291 K, e being the easy direction and a 
the hard one. It transforms into a helimagnetic phase 
at Ts--47 K (Huber & Ridgley, 1964), the moments 
being arranged in ferromagnetic sheets in the bc 
plane, with a the helix axis. Felcher (1966) and For- 
syth, Pickart & Brown (1966) have shown that the 
structure is actually a 'double spiral' (as shown in 
Fig. 1), with faint 'bunching'  (Moon, 1982). A re- 
newed interest in the material is partly associated 
with the search for a magnetic Lifshitz point (Shapira, 
Becerra, Oliveira & Chang, 1981). 

II. Experimental results 

The magnetic helical arrangement gives rise to 
neutron magnetic Bragg scattering in satellites located 
at points +-t from the reciprocal-lattice points hkl 
(hkl+ and hkl_ respectively), -r being the propagation 
vector of the helix. The magnetic scattering cross 
sections have different values in the case of MnP as 
the helix is not simple but double (Fig. 1). The sample 
investigated was a (100) platelet 0.93 c m  2 with a start- 
ing thickness of 0.11 cm. Another (100) sample 
0.4 cm 2 by 0.05 cm was just measured for comparison. 
We concentrated on the 200 and 200± reflections, i.e. 
all the diffraction experiments were performed in the 
symmetrical Bragg geometry situation. The experi- 
ments were carried out on the D13 diffractometer at 
ILL using a low-mosaic-spread (<1')  Ge 111 mono- 
chromator and the sample was cooled using a closed- 
circuit helium refrigerator. 

The nuclear scattering cross section IFN[ 2 for the 
200N reflection is 6.25x 10-2~m 2 and the average 
magnetic cross section for its satellites was found in 
the literature as 0.58 x 10 -28 m 2 (Forsyth, Pickart & 
Brown, 1966) or 0 .32x10-28m 2 (Obara, Endoh, 
Ishikawa & Komatsubara, 1980). The ratio between 
the 200_ and 200+ cross sections is -0 .7 .  The expected 
ratio between the integrated reflectivities I+ and I_ 
over IN (R+ and R_) are thus -0 .1 .  Fig. 2 shows the 
experimental ratios measured on the sample at 20 K 
set with c vertical (before any surface treatment after 
spark machining). They are about ten times bigger 
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Fig. 2. The dependence of the ratios R+ and R_ on wavelength. 
OR+ = I+/IN; [] R_ = L/IN. 



J. BARUCHEL, C. PATTERSON AND J. P. GUIGAY 49 

than expected and nearly constant with wavelength, 
indicating that this is not a multiple diffraction effect. 
When the sample was set with b vertical, they were 
reduced to - 0 . 8 7  and -0 .70 ,  indicating anisotropic 
extinction, but were still constant with wavelength. 
The second sample, which was measured for com- 
parison, gives the ratios as 0.44 and 0.38, still four 
times larger than expected. The 020 reflections, which 
are in the Laue geometry in  our experiment, exhibit 
nuclear and magnetic scattering cross sections close 
to those of the 200 reflections. Similar effects, i.e. 
ratios R+ and R_ not far from 1, were observed when 
measuring the integrated reflectivities of these Bragg 
peaks. All these results indicate a strong extinction 
effect. We decided to investigate carefully the more 
severely extinguished case and the following results 
concern the first sample set with c vertical. 

The sample thickness was reduced in stages by 
careful polishing with fine-grain emery paper fol- 
lowed by 6 I~m diamond paste. Care was taken to 
maintain the surface state as constant as possible 
because, although this is not usually an important 
parameter in neutron work (Cooper & Walker, 1976), 
the nuclear intensity was observed to drop by a factor 
of 1-5 after the initial polish, the magnetic intensities 
remaining almost the same. Rocking curves of the 
200 reflections were performed after each polish and 
the incident monochromatic beam (h = 2.2 A, ---67 
neutrons mm -2 s -1) measured in order to obtain ab- 
solute reflectivities, corrections being made for cryo- 
stat absorption and geometrical factors. Scattering 
from the 200_ satellite occurs nearly in the ( + -  
parallel setting at h = 1.6/~; the width of this rocking 
curve, about 1.1', indicates a very small sample mosaic 
spread (<  1'). 

Fig. 3 shows the results obtained at 20 K, in the 
helimagnetic phase, for the absolute reflectivities p 
as a function of the effective thickness of the sample 
t = to/sin 0 (0 is slightly different for the various 200 
reflections). The dotted lines are just guides for the 

eye. The nuclear reflectivity pN appears to be fairly 
constant over the whole range of investigated th ick-  
ness t. The magnetic reflectivities p+ and p_ diminish 
regularly when the thickness is decreased, crossing 
the average pN at t - 1.2 mm, and varying from about 
twice to less than half of this value. The scatter of 
the experimental points for the higher values of t is 
not mainly due to counting statistics, but more prob- 
ably to the many experimental difficulties like beam 
profile and constant sample preparation. This scatter 
does not affect a first, evident, conclusion that, in 
spite of their cross sections being ten times smaller 
than the nuclear cross section, the magnetic peaks 
can display reflecting powers bigger than the nuclear 
one. This implies that magnetic and nuclear extinction 
parameters behave in very different ways. 

We measured the reflecting power pF of the 200 
mixed nuclear+  magnetic reflection in the ferromag- 
netic phase (Fig. 4). The measurements were not all 
recorded at exactly the same temperature, but were 
always in the range 70-100 K, where the magnitude 
of the magnetic moment  is almost constant with tem- 
perature. The value of PF, while bigger than the pre- 
viously measured reflecting powers, is far from being 
their sum. It increases, over the whole range of investi- 
gated thickness, by a factor - 1.5, whereas PN is nearly 
constant and p+ and p_ are enhanced by a factor of 
~-4 over the same range. 

IlL Which extinction models are possible? 

The experimental results show a very unusual 
behaviour of the relative magnetic and nuclear reflect- 
ing powers, p± being bigger than pN when the sample 
is thick enough. An extinction model that assumes 
the same distortion for the nuclear and the magnetic 
cases [for instance, a curvature of the sample, as in 
Klar & Rustichelli (1973), or a gradient of the lattice 
parameter or a mosaic spread, like in Bacon & 
Lowde's (1948) paper] appears to be in contradiction 
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Fig. 3. The variation of the absolute rettectivities p+, p_ and PN 
of the 2 + ~', 0, 0 and 200N reflections in the helimagnetic phase 
as a function of sample thickness. The dotted lines are just guides 
for the eye. T = 20 K; X = 2.2/~. 
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Fig. 4. The variation of the absolute reflectivity PF of the 200 
reflection in the ferromagnetic phase as a function of the sample 
thickness. The values of PN in the helimaguetic phase are shown 
for comparison. The dotted lines are just guides for the eye. 
A =2.2 A. 
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with these experimental facts. Indeed, (1) the nuclear 
reflecting power does not increase with sample thick- 
ness, and (2) models of this kind can only predict a 
magnetic reflecting power nearly equal to the nuclear 
case, but not twice as big. This second point is suppor- 
ted by the following argument: the angular range of 
diffraction for the magnetic peak cannot exceed that 
of the nuclear peak if the distortion is the same, and 
the reflecting power for the individual plane-wave 
components cannot be expected to be bigger. 

We are thus led to invoke a model involving either 
defects behaving, from the diffraction point of view, 
differently in the nuclear and magnetic cases, or 
defects purely magnetic in origin. We could imagine, 
for instance, that a dislocation or an inclusion could 
have an effective distorted region of larger extension 
around its core in the magnetic case than in the 
nuclear one. To the best of our knowledge this point 
has not been investigated. A simple model, based on 
the most common 'purely magnetic' defects, i.e. 
domain walls, with the assumption that the nuclear 
diffraction behavior is as for a perfect crystal, will be 
developed. 

In the helimagnetic phase chirality domains, i.e. 
regions of the sample differentiated by the sense of 
rotation of the spiral, were observed on several MnP 
samples produced in the same laboratory as the one 
we are concerned with, using the technique of neutron 
diffraction topography (Patterson, Palmer, Baruchel 
& Ishikawa, 1985). They mainly appear as stripes 
lying normal to the helix axis in all the investigated 
cases. 

No domains were thus observed topographically 
when investigating (100) platelets, because they are 
parallel to the surface (Fig. 5). Magnetostriction is 
believed to be the same for both kinds of domains; 
there is thus no variation of the distortion of the 
crystallographic lattice when going from one domain 
to the other, and their presence consequently do not 
modify the nuclear scattering. Magnetic scattering, 
on the other hand, is very sensitive to chirality 
domains. Indeed, the scattering cross section for a 
domain having a given chirality, and a given magnetic 
satellite hkl±, is proportional to [ 1 + (e. z) 2 ± 2(p. e) x 
(z. e)], where e, z and p are unit vectors along, respec- 
tively, the diffraction vector, the helix axis and the 
neutron polarization. The + sign is reversed when 
considering the other chirality. The incident unpolar- 
ized neutron beam can be regarded as the addition 

I \ \ \ \ \ \ \ \ \ \ \ \ \ ~ 1  
I / / / . / / / / / / / / / / i l  
I N N N N N N N N \ \ \ N \ N  I a 
[ / / / / / / / / / / / / i ~  
I N \ \  \ \ \ \ \ \ \ \ \ \ N  _ c 
L / / / / / / / / / / / / / A  
[ N \ \ \ \ \ \ \ \ \ \ \ \ N  

Fig. 5. Schematic diagram of the (heli- and ferro-) magnetic 
domain patterns in the investigated MnP sample. 

of two neutron beams of equal intensity but opposite 
polarization along the quantization axis of our prob- 
lem, i.e. the helix axis. The helix axis a and the 
diffraction vector are parallel in our experiment. In 
this situation the neutrons that are scattered by a 
given domain are completely different from those 
scattered by the following one because their polariz- 
ations are opposite and, therefore, there is no coher- 
ence at all between the beams diffracted by the two 
kinds of domain. Furthermore, the helix phase 
relationship is not expected to be conserved between 
one domain and the following one displaying the 
same chirality. 

In the ferromagnetic phase the only domain walls 
that are expected when taking into account the mag- 
netically hard a axis are 180 ° walls lying in the (100) 
plane, as observed by Nagai, Hihara & Hirahara 
(1970). Thus, as in the helimagnetic phase, the prob- 
able domain pattern in the (100) plate consists of a 
series of stripes parallel to the surface (Fig. 5). Fer- 
romagnetic walls and chirality domains are thought 
to be related: for a defect-free sample the width of 
the ferromagnetic walls should diverge when 
approaching the ferro-helimagnetic transition (Laj- 
zerowicz & Niez, 1979). It can be easily deduced, 
from simple arguments, that the width of the chirality 
domains is, on average, twice that of the 180 ° fer- 
romagnetic domains. Now, the magnetization lies 
along the magnetically easy c axis, which is the quan- 
tization axis in this phase. As before, the unpolarized 
incident beam can be considered as the addition of 
two beams polarized along the quantization axis. For 
a given neutron polarization the structure factors are, 
for the two domains, F+=FN+FM and F_= 
F N -  FM. As none of these structure factors is zero 
(unlike in the helimagnetic phase), a fraction of the 
neutrons participate in the scattering in the two kinds 
of domains, and a partial coherence between the 
beams diffracted by the two kinds of domain is to be 
expected. 

All these elements lead us to consider the model 
of the following section. 

IV. A possible model: nearly perfect crystal with 
type II secondary magnetic extinction 

( A ) Reflecting power in the helimagnetic phase 

The nuclear reflecting power pN, not varying much 
with the crystal thickness, appears at least qualita- 
tively similar to Pdyn, the reflecting power of a perfect 
crystal in the Bragg case (Fig. 6) (Zachariasen, 1945) 

Pdyn---- ( A2 F~ Vsin 20) tanh (to~A) 

= pOO tanh (t0/A ) (1 a) 

A = V sin O/ZIF, ( lb)  

where A is the extinction period in the Bragg sym- 
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metrical setting (V being the volume of the unit cell 
and the other symbols having their usual meanings). 

The average of the experimental pN is --4.4 x 10 -5, 
the value of pTv for the 200 reflection of MnP being 
1.75 x 10 -5. The experimental value can be accounted 
for by assuming (1) that the bulk of the sample 
behaves as a nearly perfect crystal, i.e. that its contri- 
bution is pTv, since the thickness of the crystal is 
always much bigger than AN (--7 l~m) (see Fig. 6), 
and (2) that the two surfaces, distorted by the polish- 
ing, can be described by two layers behaving in a 
kinematical way over an 'effective distorted distance' 
2do. The value of do should be of the same order of 
magnitude as that of the diamond grain diameter 
( - 6  I,m). Absorption is not completely negligible and 
is taken into account when considering the intensity 
diffracted by the back surface. The experiments hav- 
ing been performed at low temperatures, TDS and 
Debye-Waller corrections were assumed negligible 
throughout this work. 

The total reflecting power per unit surface is thus 

pN=p~+QNd(l+e-2"'), (2a) 

% 

l L'/sin O 

Fig. 6. The reflectivity of a perfect crystal from dynamical theory 
in the Bragg case as a function of thickness. The saturation value 
Pdy. is reached for a sample thickness of approximately 2 A. 

where 

• QN = IFNI2A3/v 2 sin 20N and d = do/sin ON. 
(2b) 

We need to take do = 5.3 I*m (which is physically 
reasonable) to fit the experimental results (Fig. 7a). 

It appears less straightforward to explain the 
behaviour of the two magnetically scattered curves. 
The reflecting power per unit surface p of a platelet 
can always be compared with the kinematical reflect- 
ing power Pkg,, and described by the relation 

p=pk~D,=Q[(1-e-~')/tx]y, (3) 

where t = to/sin 0 is the thickness of the platelet along 
the neutron beam, [ ( 1 - e - " ' ) / / z ]  is an effective 
thickness that takes the absorption into account 
(Zachariasen, 1967) and y is the extinction par- 
ameter. 

We saw in the previous section that the sample is 
composed, from the magnetic diffraction point of 
view, of thin optically independent slices (the chiral- 
ity domains) parallel to the surface, with no mis- 
orientation between neighbouring slices. For the par- 
ticular reflections we are concerned with such a crystal 
is similar to the model defined by Zachariasen as 
type II secondary extinction (as opposed to type I, 
where extinction is dominated by the misorientation 
between mosaic blocks). In the type II model the 
natural width of the reflection from a single block is 
greater than the mosaic-spread parameter. The extinc- 
tion is thus mainly due to the size of the blocks, which 
gives rise to an apparent mosaic spread .-.A/r. 
Zachariasen (1967) worked out a very simple and 
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Fig. 7. The experimental points and calculated curves for (a) 200N, (b) 2-  z, 0, 0, (c) 2+ % 0, 0 in the helimagnetic phase; (d) whole 

set of calculated curves on the same graph. ( T = 20 K, h = 2.2/~.) 



52 NUCLEAR AND MAGNETIC EXTINCTION IN MnP 

commonly used expression for the extinction par- 
ameter y, 

with 

y = (1 + 2go) -1/2 (4a) 

Xo = A- l rQt  sin 20, (4b) 

in the type II approximation, which requires r < A. 
(This excludes the simultaneous presence of type II 
secondary extinction and of primary extinction.) The 
angular dependence has been introduced in Xo follow- 
ing Becker & Coppens (1974a). 

The expression r sin 20 in (4b), r being the 
spherical radius, should be substituted in our case by 
(4ro cos 0)/3, with ro the average thickness of the 
chirality domains. 

It is possible to obtain experimental values for Q+ 
and Q_ (and thus for the cross sections IF+l 2 and 
]F_] 2) by extrapolating the experimental curves to 
t = 0 and measuring the slopes of the tangents at this 
point. We preferred to employ this self-consistent 
procedure instead of using calculated values for Q, 
based on published data, in spite of its poor accuracy. 
We find Q+=9.3(7)  and Q_=6.8(6)i~m -1, which 
correspond to average values ]F+] 2 = 0.62 x 10 -2s m 2 
and ]F_[ 2=0 .41x  10 -2s m 2. These last values are 
intermediate between those found in the literature 
and close to those published by Forsyth, Pickart & 
Brown (1966). 

Figs. 7(b) and (c) show the experimental points 
and the curves calculated using the above values for 
Q+ and taking r0 = 2.8 ~m. The distorted regions near 
the surface have not been taken into account because 
their contribution to scattering here is very weak, as 
indicated by the experimental fact that the initial 
polish, whereas reducing significantly the nuclear 
intensity, has no effect on the magnetic ones. Fig. 
7(d) shows the whole set of calculated curves 
together. 

three terms: 

pF = ( 1 -  a)Pdy,+ Qpd(1 + e -2~') 

+ aQF[ (1 - e -" ' ) / Ix  ]y, (5) 

these being (1) the perfect-crystal-like bulk scattering, 
(2) the kinematical scattering from the distorted sur- 
faces, and (3) the type II secondary-extinction bulk 
scattering, respectively. In the first t e r m  pd~yn results 
from the addition of the dynamical diffraction for 
both polarizations, with structure factors F+ and F_, 
and its value is thus just equal to p~. A scattering 
cross section IF~12 = IFNI 2+ IFMI = is used for the other 
two terms. In the second term the effective width d, 
which describes the scattering by the surfaces, should 
be of the same order as for the spiral phase, but 
slightly smaller owing to a slight increase in the scat- 
tering cross section. 

The average width of the domains in the ferromag- 
netic phase should be half that in the helimagnetic 
phase. The chirality domain width was described, in 
the extinction formalism, by r0 = 2.8 t~m. It appears 
sensible then to take ro = 1.4 p.m in the present case. 

The fit shown in Fig. 8 was obtained from (5) using 
values of a = 0.12 and do = 4 txm, which are not physi- 
cally unreasonable. Fig. 8 also shows how the calcu- 
lated PF is situated with respect to the average pN 
measured in the helimagnetic phase. The physical 
meaning of these results will be discussed in § VI. 

V. Reflectivity ratios R+ and R_ as a function 
of wavelength 

A tentative explanation of the results of Fig. 2, i.e. 
the invariance of R~ with wavelength, can be deduced 
from our general arguments about the reflecting 
power as a function of the neutron wavelength. The 
reflectivity of a perfect crystal in the symmetrical 
Bragg case given in (1) can be rewritten as 

pdyn=(dJto)( tan  0)A tanh A, (6) 

( B ) Reflecting power in the ferromagnetic phase 

The results for the ferromagnetic phase will be 
treated in a similar manner to those of the helimag- 
netic one. As pointed out before, a partial coherence 
is expected between neutrons scattered from both 
types of domain in this phase. A factor a is introduced 
to allow, in a phenomenological way, for this partial 
coherence of the diffraction. The whole incoming 
neutron beam is scattered in a kinematical way by 
the distorted surfaces, but only a fraction ( 1 -  a)  of 
the neutrons 'see' the crystal as being uniform all 
through their path within the sample, the rest of them 
(fraction a)  being diffracted as for a crystal composed 
by several optically incoherent blocks. The reflecting 
power PF contains in the present crude approximation 
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Fig. 8. The experimental points and calculated curve for the 200 
reflection in the ferromagnetic phase. The calculated curve for 
the 200N reflection in the helimagnetic phase (dotted line) is 
shown for comparison (A = 2.2 A). 
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in which dh is the distance between successive reflect- 
ing planes and A is a reduced parameter: 

A =  to/A = 2(dhFto)/ V.. (7) 

The ideally imperfect crystal case is obtained as the 
limit of Pdyn for A ~ 0: 

Pkin = ( d J  to)(tan O)A 2. (8) 

This formulation suggests that, at least in some cases, 
the real crystal case could be described by replacing 
A tan A or A 2 by some unknown function of the same 
parameter A. If this is true, p / tan  # would be indepen- 
dent of ~. The ratios of the easily measured quantities 

i± = / ± / t a n  0± and iN = / N / t a n  O~v 

would consequently be independent of A (it is experi- / 
mentally simpler to consider intensity ratios in order 
to eliminate the incident intensity). This idea is in 
good agreement with our measurements of R± shown 
in Fig. 2. (The angular factor is practically constant 
for the range of wavelength we are concerned with.) 

VI. D i s c u s s i o n  

Fig. 9 shows the 'experimental' extinction parameter 
y, obtained by dividing the measured reflecting power 
by the kinematical value just corrected for absorption. 

y 
o ~N 

1 .o  • t~F . . . . . . . .  
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I o  
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Fig. 9. The experimental value of the extinction parameter  y as a 
function of  the sample thickness for the whole set of  200 reflec- 
tions. The dotted lines are just guides for the eye. 

It can be observed that all the values of y are smaller 
than 0.7, some of them being as small as 2.5 x 10 -2. 
These very severe extinction effects are beyond those 
usually observed and corrected for by extinction 
models. 

We are, nevertheless, able to account for these 
results, in a phenomenological way, by using a 'per- 
feet' crystal and/or  Zachariasen's type II secondary 
extinction theories. It was pointed out by several 
authors (Becker & Coppens, 1974a, b; Cooper & 
Rouse, 1976) that the simple expression (4) leads to 
satisfactory results only for y > 0.7, just out of the 
range of the present work (Fig. 9). The physical mean- 
ing of the values we derived for the various para- 
meters, which is always a non-trivial problem, appears 
thus to be even more difficult in our case. Some 
comparisons of block sizes, r, with dislocation 
densities (Killean, Lawrence & Sharma, 1972; 
Sharma, 1974) seem to indicate that Zachariasen's 
theory leads to physically unrealistic results. 
However, Becker & Coppens (1974b), when treating 
the same experimental results with their formalism, 
and taking into account the primary nature of extinc- 
tion, concluded that the block size is in reasonable 
agreement with the dislocation density. The same 
conclusion is also reached by Olekhnovich, 
Markovich & Olekhnovich (1980). It has been pointed 
out by Nelmes (1980) that the essential purpose of 
extinction models is to describe adequately the 
difference between observed and calculated 
integrated intensities. Once this is achieved, the same 
model does not necessarily provide an accurate 
description of the actual microstrueture of the 
crystal. 

The values of ro obtained in this experiment are 
coherent with the initial assumption of the model 
(to "~ A). In the helimagnetic case this value does not 
appear to be in agreement with the average size of 
chirality domains (0.1 mm) observed on several 
samples of various orientations (Patterson, Palmer, 
Baruchel & Ishikawa, 1985). For the model to work 
there must be a loss of coherence between blocks. 
Three possibilities can be conceived when maintain- 
ing the assumption that the form (4a) of the extinction 
parameter y is the adequate one: (1) that in this 
sample the chirality domains have an average size of 
2.8 ~m; (2) that these domains are 0.1 mm in size but 
there is a loss of coherence along the spiral every 
2.8 I~m without reversing the sense of chirality, and 
(3) that the actual physical domains of unknown 
thickness (maybe 0.1 mm) are described in an 
effective way in this extinction formalism by blocks 
of 2.8 I~m. The first and third points should also hold 
for the ferromagnetic case, but the second one, having 
no ferromagnetic counterpart, is more difficult to 
admit. Another possibility could be, of course, to try 
to apply more elaborate theories of extinction 
(Werner, 1974; Kato, 1980). 
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Summary 

One of the most striking experimental effects observed 
is that two magnetic satellites having scattering cross 
sections ten times smaller than the nuclear reflection 
have reflectivities nearly twice as great as the nuclear 
case. The purely nuclear scattering data can be 
described from dynamical theory but another 
approach is needed to describe the magnetic effects. 
We used a model based on secondary extinction, 
which starts from the chirality domain structure of 
the sample. The explanation we give for the ferromag- 
netic data integrates elements of the two approaches, 
the ferromagnetic domains replacing, with half the 
width, the chirality domains. It is interesting to note 
that in our case the mixed nuclear + magnetic reflec- 
tion is less extinguished than the corresponding 
nuclear one. If domains are at the root of the problem 
then, in the ferromagnetic case, they can be removed 
by applying a magnetic field (which would increase 
the extinction) but we do not know of any method 
of obtaining a single-domain helimagnet. The invari- 
ance of the R± ratios with wavelength appears to be 
related to general diffraction arguments. 

This work may appear marginal because, whereas 
it treats quite spectacular experimental facts, it deals 
with the diffraction of neutrons by nearly perfect - or 
at least very severely extinguished - magnetic crystals. 
This subject, covered theoretically by several works 
in the last years (Guigay, Schlenker & Baruchel, 1984, 
and references therein) is experimentally still new 
because only very few magnetic materials exhibiting 
a very high crystalline quality have been grown and 
therefore investigated. To the best of our knowledge, 
the only material studied by neutron diffraction from 
this point of view, excluding papers where severe 
extinctions were corrected for but where no emphasis 
was put on this problem (for instance, Shirane, 
Chikazume, Akimitsu, Chiba, Matsu & Fujii, 1975), 
is yttrium iron garnet (YIG) (Bonnet, Delapalme, 
Fuess & Becker, 1979; Baruchel, Guigay, MazurC- 
Espejo, Schlenker & Schweizer, 1982). 

The present work presents one possible model, but 
other models based on the different effective width 
of defects when viewed by magnetic and nuclear 
reflections or on more rigorous treatments of extinc- 
tion appear to be possible. The main point to be 

emphasized here is the experimentally observed 
different extinction effects for magnetic and nuclear 
reflections when separated peaks exist (antiferromag- 
netic-type materials). 

These differences were encountered, in an attenu- 
ated form, in a range of magnetic materials far larger 
than nearly perfect crystals (on MnF2 or on pure Tb 
and Ho crystals, for instance). The reason this kind 
of phenomena does not appear in the literature could 
just be because the results were not explained in a 
satisfactory way for the authors. With the increased 

availability of good-quality magnetic single crystals, 
great progress could be made in this field allowing 
experimental verification of the more curious aspects 
of dynamical magnetic theory. 

The authors express their gratitude to Professor Y. 
Ishikawa for the provision of the MnP samples, valu- 
able discussions and his interest throughout this work, 
and to Professor P. Becker for very useful remarks. 
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Abstract 
Fivefold and sevenfold symmetry operations are, oI 
course, incompatible with repetition by a lattice but, 
with the appearance of structures involving curved 
sheets, they and other non-crystallographic 
operations must now be taken into consideration as 
possibilities of non-Euclidean crystallography 
develop. Here are described the symmetry groups 
which might be called 732 and 73m and which may 
be found in two-dimensional manifolds. 

Structures with fivefold symmetry on the surface of 
a sphere have been familiar at least since the work 
of Caspar & Klug (1962). There are two ways of 
regarding the packing of units on the surface of a 
sphere: 

(a) they may be considered as forming a finite 
particle with the three-dimensional point symmetry 
groups 532 or 53m for which there are respectively 
(depending on whether mirror symmetry is forbidden 
or permitted) 60 and 120 fundamental regions or 
asymmetric units of pattern; or 

(b) they may be considered as a packing in two- 
dimensional curved space of non-Euclidean metric. 
This approach enables us to bring sevenfold (and 
higher) symmetry within the compass of crystal- 
lography. 

The curvature arises because five units, which may 
be equilateral triangles, pack around a fivefold axis 
to give an icosahedron. If the edges of this icosahe- 
dron are projected radially on to the circumscribed 
sphere then a tessellation of spherical triangles is 
obtained. The sum of the angles of a triangle made 

0108-7673/86/010055-02501.50 

up of geodesics on the surface is given by 

a +,8 + ~/= "n'+ S K dS, 

where K is the Gaussian curvature of the surface. As 
the curvature is positive the surface closes on itself 
and is of finite area. 

At any point in a surface there will be two principal 
curvatures K1 and K 2 in perpendicular planes. The 
mean (or first) curvature is J = (K1 +/(2) /2  and the 
Gaussian (or second) curvature is K = K1K2. 

In any extended plane tessellation of triangles, the 
mean coordination number of a point is six. If the 
coordination number is less than six then a spherical 
or positively curved elliptical space is obtained. 
However, if the mean coordination number is greater 
than six a curved two-dimensional space is obtained 
having hyperbolic or negative Gaussian curvature. A 
graphic illustration of a surface where the local 
coordination in the surface is greater than six is 
provided by a frond of crinkled seaweed such as 
Fucus letuca, where the area out to a distance r from 
any given point increases faster than 7rr 2. In fact, the 
circumference of a small circle on a surface of 
Gaussian curvature K is given by s ( r ) =  
27rr-(1/3)~rKr3+terms in r 5 and higher powers. If 
the space is curved and non-Euclidean then the 
parallel postulate of Euclid fails and the concept of 
repetition on a lattice must be abandoned. On the 
surface of a sphere the asymmetric units are repeated 
by rotations and reflections. In addition to the groups 
532 and 53m, the axial groups N, N2, N / m  are well 
known. 

The surface of a sphere is, of course, a finite space 
but surfaces with negative Gaussian curvature may 
be infinite. Some of these have recently come into 
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